Transistores


O que é?




O transistor é um componente de circuito elétrico, cujo nome vem do termo transfer resistor, ou seja, resistor de transferência, que se tornou popular nos anos de 1950, sendo ele o grande responsável pela revolução da eletrônica. Uma de suas principais funções é a de aumentar e chavear os sinais elétricos.
O transistor surgiu no ano de 1948 meio que ao acaso. Nesse ano, três cientistas norte-americanos descobriram um cristal de semicondutores e através deste apresentaram dois tipos de junções. Nas pesquisas com esse material, os cientistas perceberam que ele tinha a capacidade de fazer amplificações parecidas com as obtidas com a válvula de triodo. Dessa forma, descobriram um novo componente: o transistor. Ele é basicamente um substituto das antigas válvulas eletrônicas. Sua aplicação é vantajosa, pois o custo de fabricação é menor e ele gasta menos energia que as antigas válvulas. 

Essa descoberta possibilitou um grande avanço na eletrônica, de forma que o dispositivo passou a ser largamente empregado nos circuitos eletrônicos. Em razão do avanço tecnológico que esse componente favoreceu, os cientistas que fizeram a descoberta receberam o prêmio Nobel da Física no ano de 1956.

Aplicações

O transistor pode ser empregado de muitas maneiras, mas basicamente ele desempenha duas funções: amplificação e chaveamento. No caso da amplificação, podemos fazer uma analogia com uma torneira: girando a torneira, podemos controlar o fluxo de água, tornando-o mais forte ou mais fraco. No caso do chaveamento, podemos imaginar o transistor como um interruptor de luz: ligando o interruptor, a luz se acende; desligando o interruptor, a luz se apaga. Da mesma forma que a torneira controla o fluxo de água, o transistor controla o fluxo de corrente elétrica. E da mesma forma que o interruptor “chaveia” (liga ou desliga) a luz, o transistor pode chavear corrente elétrica. A grande diferença, contudo, da torneira e do
interruptor para o transistor é que nos dois primeiros o controle é feito pelas nossas mãos. Já no transistor, o controle da amplificação e do chaveamento é feito por corrente elétrica. Ou seja, no transistor bipolar temos corrente elétrica controlando corrente elétrica. Isso é importante por diversos motivos: em primeiro lugar, com o controle sendo feito por corrente elétrica, consegue-se num transistor uma velocidade de operação milhares de vezes mais rápida do que nossas mãos. Em segundo lugar, o transistor pode ser acoplado a
outras fontes de sinal elétrico, como uma antena, um microfone, ou mesmo um outro transistor. Por fim, sendo controlado por corrente, o transistor pode funcionar como uma “chave eletrônica”, sem partes móveis, muito mais rápida e eficiente do que os antigos relés (chaves eletro-mecânicas).

Fabricação

Os materiais utilizados na fabricação do transistor são principalmente o Silício (Si), o Germânio (Ge), o Gálio (Ga) e alguns óxidos. Na natureza, o silício é um material isolante elétrico, devido à conformação das ligações eletrônicas do seu átomo, gerando uma rede eletrônica altamente estável. Atualmente, o transistor de germânio é menos usado, tendo sido substituído pelo de silício.
O silício é purificado e passa por um processo que forma uma estrutura cristalina em seus átomos. O material é cortado em finos discos, que a seguir vão para um processo chamado de dopagem, onde são introduzidas quantidades rigorosamente controladas de materiais selecionados (conhecidos como impurezas) que transformam a estrutura eletrônica, introduzindo-se entre as ligações dos átomos de silício. O Silício realiza ligações covalentes de quatro elétrons. Quando adicionamos uma impureza com 3 elétrons na última camada, faltará um elétron na ligação covalente, formando os buracos e caracterizando a pastilha como pastilha P.
Quando adicionamos uma impureza com 5 elétrons na última camada, vai sobrar um elétron na ligação covalente com o silício. Esses elétrons livres têm pouca interação com seu átomo, então qualquer energia fornecida o faz sair, sendo assim um elétron livre (assim se forma a pastilha N, que tem esse nome por ter maior número de elétrons livres). A pastilha P tem menos elétrons livres e mais "buracos" e a Pastilha N tem mais elétrons livres que buracos. Não podemos dizer que a pastilha P é positiva nem que a pastilha N é negativa, porque a soma total de elétrons é igual à soma total de prótons. Quando unimos a pastilha P e a pastilha N, os elétrons livres em excesso na pastilha N migram para a pastilha P e os buracos da pastilha P migram para a pastilha N. Deste modo a pastilha P fica negativa e a pastilha N fica positiva. Isto é o diodo.
O transistor é montado justapondo-se uma camada P, uma N e outra P (unindo-se dois diodos), criando-se um transistor do tipo PNP. O transistor do tipo NPN é obtido de modo similar. A camada do centro é denominada base, e as outras duas são o emissor e o coletor. No símbolo do componente, o emissor é indicado por uma seta, que aponta para dentro do transistor se o componente for PNP, ou para fora, se for NPN.
Cientistas portugueses do Centro de Investigação de Materiais (Cenimat) da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, conseguiram fabricar pela primeira vez transistores com papel. Essa equipe de investigadores foi liderada por Elvira Fortunato e Rodrigo Martins.


Funcionamento

No transistor de junção bipolar ou TJB (BJT – Bipolar Junction Transistor na terminologia inglesa), o controle da corrente coletor-emissor é feito injetando corrente na base. O efeito transistor ocorre quando a junção coletor-base é polarizada reversamente e a junção base-emissor é polarizada diretamente. Uma pequena corrente de base é suficiente para estabelecer uma corrente entre os terminais de coletor-emissor. Esta corrente será tão maior quanto maior for a corrente de base, de acordo com o ganho.

Importância

O transistor é considerado por muitos uma das maiores descobertas ou invenções da história moderna, tendo tornado possível a revolução dos computadores e equipamentos eletrônicos. A chave da importância do transistor na sociedade moderna é sua possibilidade de ser produzido em enormes quantidades usando técnicas simples, resultando preços irrisórios.
É conveniente salientar que é praticamente impossível serem encontrados circuitos integrados que não possuam, internamente, centenas, milhares ou mesmo milhões de transistores, juntamente com outros componentes como resistências e condensadores. Por exemplo, o microprocessador Cell do console Playstation 3 tem aproximadamente 234 milhões de transistores, usando uma arquitetura de fabricação de 45 nanômetros, ou seja, a porta de controle de cada transistor tem apenas 45 milionésimos de um milímetro.
Seu baixo custo permitiu que se transformasse num componente quase universal para tarefas não-mecânicas. Visto que um dispositivo comum, como um refrigerador, usaria um dispositivo mecânico para o controle, hoje é frequente e muito mais barato usar um microprocessador contendo alguns milhões de transistores e um programa de computador apropriado para realizar a mesma tarefa. Os transistores, hoje em dia, têm substituído quase todos os dispositivos eletromecânicos, a maioria dos sistemas de controle, e aparecem em grandes quantidades em tudo que envolva eletrônica, desde os computadores aos carros.
Seu custo tem sido crucial no crescente movimento para digitalizar toda a informação. Com os computadores transistorizados a oferecer a habilidade de encontrar e ordenar rapidamente informações digitais, mais e mais esforços foram postos em tornar toda a informação digital. Hoje, quase todos os meios na sociedade moderna são fornecidos em formato digital, convertidos e apresentados por computadores. Formas analógicas comuns de informação, tais como a televisão ou os jornais, gastam a maioria do seu tempo com informação digital, sendo convertida no formato tradicional apenas numa pequena fração de tempo.



Nenhum comentário:

Postar um comentário